3.653 \(\int x^4 (A+B x) \sqrt{a^2+2 a b x+b^2 x^2} \, dx\)

Optimal. Leaf size=114 \[ \frac{x^6 \sqrt{a^2+2 a b x+b^2 x^2} (a B+A b)}{6 (a+b x)}+\frac{a A x^5 \sqrt{a^2+2 a b x+b^2 x^2}}{5 (a+b x)}+\frac{b B x^7 \sqrt{a^2+2 a b x+b^2 x^2}}{7 (a+b x)} \]

[Out]

(a*A*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*(a + b*x)) + ((A*b + a*B)*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(6*(a
+ b*x)) + (b*B*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0670668, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.069, Rules used = {770, 76} \[ \frac{x^6 \sqrt{a^2+2 a b x+b^2 x^2} (a B+A b)}{6 (a+b x)}+\frac{a A x^5 \sqrt{a^2+2 a b x+b^2 x^2}}{5 (a+b x)}+\frac{b B x^7 \sqrt{a^2+2 a b x+b^2 x^2}}{7 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[x^4*(A + B*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

(a*A*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*(a + b*x)) + ((A*b + a*B)*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(6*(a
+ b*x)) + (b*B*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*(a + b*x))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && (NeQ[n, -1] || EqQ[p, 1]) && N
eQ[b*e + a*f, 0] && ( !IntegerQ[n] || LtQ[9*p + 5*n, 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0] && Rational
Q[a, b, d, e, f])) && (NeQ[n + p + 3, 0] || EqQ[p, 1])

Rubi steps

\begin{align*} \int x^4 (A+B x) \sqrt{a^2+2 a b x+b^2 x^2} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int x^4 \left (a b+b^2 x\right ) (A+B x) \, dx}{a b+b^2 x}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (a A b x^4+b (A b+a B) x^5+b^2 B x^6\right ) \, dx}{a b+b^2 x}\\ &=\frac{a A x^5 \sqrt{a^2+2 a b x+b^2 x^2}}{5 (a+b x)}+\frac{(A b+a B) x^6 \sqrt{a^2+2 a b x+b^2 x^2}}{6 (a+b x)}+\frac{b B x^7 \sqrt{a^2+2 a b x+b^2 x^2}}{7 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0216679, size = 49, normalized size = 0.43 \[ \frac{x^5 \sqrt{(a+b x)^2} (7 a (6 A+5 B x)+5 b x (7 A+6 B x))}{210 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4*(A + B*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

(x^5*Sqrt[(a + b*x)^2]*(7*a*(6*A + 5*B*x) + 5*b*x*(7*A + 6*B*x)))/(210*(a + b*x))

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 44, normalized size = 0.4 \begin{align*}{\frac{{x}^{5} \left ( 30\,Bb{x}^{2}+35\,Abx+35\,aBx+42\,aA \right ) }{210\,bx+210\,a}\sqrt{ \left ( bx+a \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(B*x+A)*((b*x+a)^2)^(1/2),x)

[Out]

1/210*x^5*(30*B*b*x^2+35*A*b*x+35*B*a*x+42*A*a)*((b*x+a)^2)^(1/2)/(b*x+a)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(B*x+A)*((b*x+a)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.34436, size = 66, normalized size = 0.58 \begin{align*} \frac{1}{7} \, B b x^{7} + \frac{1}{5} \, A a x^{5} + \frac{1}{6} \,{\left (B a + A b\right )} x^{6} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(B*x+A)*((b*x+a)^2)^(1/2),x, algorithm="fricas")

[Out]

1/7*B*b*x^7 + 1/5*A*a*x^5 + 1/6*(B*a + A*b)*x^6

________________________________________________________________________________________

Sympy [A]  time = 0.116205, size = 29, normalized size = 0.25 \begin{align*} \frac{A a x^{5}}{5} + \frac{B b x^{7}}{7} + x^{6} \left (\frac{A b}{6} + \frac{B a}{6}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(B*x+A)*((b*x+a)**2)**(1/2),x)

[Out]

A*a*x**5/5 + B*b*x**7/7 + x**6*(A*b/6 + B*a/6)

________________________________________________________________________________________

Giac [A]  time = 1.23265, size = 105, normalized size = 0.92 \begin{align*} \frac{1}{7} \, B b x^{7} \mathrm{sgn}\left (b x + a\right ) + \frac{1}{6} \, B a x^{6} \mathrm{sgn}\left (b x + a\right ) + \frac{1}{6} \, A b x^{6} \mathrm{sgn}\left (b x + a\right ) + \frac{1}{5} \, A a x^{5} \mathrm{sgn}\left (b x + a\right ) - \frac{{\left (5 \, B a^{7} - 7 \, A a^{6} b\right )} \mathrm{sgn}\left (b x + a\right )}{210 \, b^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(B*x+A)*((b*x+a)^2)^(1/2),x, algorithm="giac")

[Out]

1/7*B*b*x^7*sgn(b*x + a) + 1/6*B*a*x^6*sgn(b*x + a) + 1/6*A*b*x^6*sgn(b*x + a) + 1/5*A*a*x^5*sgn(b*x + a) - 1/
210*(5*B*a^7 - 7*A*a^6*b)*sgn(b*x + a)/b^6